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ABSTRACT

This is a continuation of MRC Technical Summary Report
#997. The connection between monosplines and quadrature
formulae is used to determine the best quadrature formula for

f f(z)dz integrated along the unit circle. The quadrature

formula exact for all spline functions is also derived.




ON POLYNOMIAL SPLINE FUNCTICNS ON THE CIRCLE II.

MONOSPLINES AND QUADRATURE FORMULAE

I. J. Schoenberg

Introduction

In [ 4] we have studied the interpolatory properties of the class Sm K
)

of polynomial spline functions on the circle that were first discussed by
Ahlberg, Nilson and Walsh {see {[1], also for further references). In the

present second paper we discuss quadrature formulae of the form

k-1
(1) [f(z)1dz = Y, C f(u)) + RE
U o J

where U is the unit circle lzl = ] described counter-clockwise aad
w = exp(2ni/k) . This problem requires a discussion of monosplines and
will suggest several classes of spline functions and monosplines having note-

worthy properties. Free use is made of the results of [4], in particular of

B-splines and their Fourier serieés expansions.

1. Mono:plines and quadrature formulae. Let k and m be positive

integers. Our objective is to derive quadrature formulae of the form (1) which

are to be exact for polynomials of degree not exceeding m-l, i.e.

(1.1) RE=0 If ferm
m-1

This property is equivalant to the relations

k-1
(1.2) fzvdz=0=ZCjwjv, (v=0,1,..,ml) ,
U §=0

Sponsored by the United States Army under Contract No.: DA-31-124-ARO-D-462,




and these show that the quadrature formula (1) has the property (1.1) if and
only if

k-1
(1.3) the polynomial Z Cj xj vanishes if x=1,w,...,w
0

m-1

We conclude the following: 1. If m2k then the polynomial (1. 3)
vanishes identically, hence Cj =0 forall j. 2. If mck then the poly-
nomial (1.3) =till depends on k-m arbitrary linear parameters. Avoiding
trivial cases we shall assume that
(1.4) l1=mck

Expanding the binomials appearing in (1.5) we see that the condition
{i.3) is equivalent to the validity of the identity in 2z

k-1

(1.5 % Cj(z-wj)m-l -0 .

At this point we reintroduce the class Sm of polynomial spline functions on

J

sk

U of degree m-1 having the " as knots, and for a good reason. In fact the

identity (i.5) is the precise condition for the existence of a function S(z2)} eSm K
?

such that

(m-

1)(z) at z=mj (J=0,...

on the arc (wk-l, 1) then the function on U

k-1
w

(1.6) Cj = the jump of S k-1)

Indeed, if S(z) = Q(z)e -l

defined on the arcs (wk-l,l), (Lw), ..., ( ,1) Dby the successive partial

sums of the expression

k-1 jym=1
Qlz) + ) C, &=
0

) (m-1)!
is, in view of (1.5), a spline function S(z) with the property (1.6).
The connectior of the spline function S(z) with the quadrature formula

(1) is close as shown by

Lemma 1. If we write
g} e —————
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(1.7) K(z) =L 2™ - s(z2

m!
and if
(1.8) f(z) e ™ (U)

then we have the relation

k=1
1.9 [flz)dz = Y C

jf(wj) + (=)™ [ K(2) £ (2) az
U 0 U

Proof. By (1.6) and (1.7) we find that

(1.10) -C, = the jump of k™1 !

]

(z) at z =W

Integrations by parts show that

(m-

)

(k2™ (2)dz = - K2 ™Dy dz = ... = (0™ (kO D ()5 (2) az
U U v

a point beyond which we can not continue the process because of the discon-

(m-1)

tinuities of K (z) . However, we may proceed as follows

+1
Y
[k 8™ (2)dz = ¢-)™'F [ k™ Do) 8(2) a2
8) ’ j wl

| J+1
- - - w -
o= (T IZ{x(m 1)(wj_+l)" k(™ l)(wi)f(wj) 'f, £(z) ak™ l"(z%
’ J

()

and using (1.10) we obtain

[z 6™ (1) iz = (-1)’“'12cj t(o)) + (-1)™[£(2) dz
U U

because dK(m'l)(z) = dz within each of the arcs.
Using a term familiar from the real axis case (see e.gq. [3]) we call K(z)
a monospline of degree m and denote their class by the symbol rnm K We
’

may then summarize our results as follows: To every quadrature formula (1)

with the property {i.1) corresponds a monospline K(z) producing the identity
(1.9). Conversely, to every monospline K(z) corresponds a quadrature

#1002 -3-



formula (1), the Cj being described by (1.6). This correspondence is one-
to-one up to an element of “m-l that we may add to K(z) without changing "
our results. Our discussion of the quadrature formula (1) will single out cer-

tain spline functions and monosplines for special study.

2. The flower-_sha&d sgline functions. Let S(z)e¢ Sm K and let us

’

assume that it satisfies th:2 functional equation

(2.1) S(zw) =« 8(z) , (lz]l =1) ,

where r is an integer, 0 =r k-1 . We could say that S(z) is quasiperiodic,
or r-quasiperiodic. However, in view of the rotational symmetry of the image
of U by w =8(z) we prefer to say that S(z) is flower-shaped and also that
S(z) is an r-flower (see Fig. 1 in [4] showing the image of U by a 3-flower

for k=5, m=2).

In terms of the B-spline Mm(z) of [ 4] we have .
Lemma 2. For each r, 0 =r =k-1, there is up to a constant factor a ’
Someattm—memmy | eee— e

unique r-flower given by the formula
k-1 ir _
(2.2) S{(z) = Z oM (zZw
j=0 ™

5)

Proof: By [4, Lemma 1] we may write

S(z) = ch Mm(zc»_’) ’

1-j r - -
and (2.1) gives ch Mm(Zw ) = chw Mm(Zw j) or Zc“le(zw ’) =

= c,wf and finally c, = Sy T . Setting

j+l ] J
o = ! we obtain (2.2) . Conversely, it is easily established that (2. 2)

EcjwrMm(Zw-j) , whence c¢

satisfies (2.1) and Lemme 2 is established.

The Fourier expansions of r-flowers are described by
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Lemma 3. If S(z) is an r-flower then, up to a constant factor,
TR —

(2.3) S(Z):zr if r=0,1,...,m-1 ,

and

(2.4 S{z) = io 1 LRSHT
-4 2} = S, kstr)(kstr-1).. . (ks+r-m+l)

 r=m,mtl, ... k-1

Proof: We recall {4, formula (2.16)] that

0
I v
(2. 5) M (2) = 5 Z;bvbv_l...bv_m+lz
where
1-w 2mi
(2.6) b, == it v+0, by ==
From {2.2) and (2.5)
k-1
a - A jr -jv v
8(z) = 2mi g’bv y-m+l j-Ow w z
or
__k v
(2.7) s(2) = X §bvbv__l... b,_ 1%

where the summation is over all v=r (mod k), hence v =ks+r . By (2.6)
we see that bv =0 1if v is a nonvanishing multipleof Xk . If 0 =r £ m-l
then (2.7) is seen to reduce to the single term corresponding to s =0 or

v = r and this is indeed proportional to (2.3). Also directly it is clear that

r r .
z ¢8 and that z i< an r-~ficwer.
m, k

If msr=k-l, we may discard on the right side of (2.7) the non-

vanishing factor

1 -r+m-l
w

_k -r -r+
Zﬂi(l-w )(l-w ).-. (l’ )

and we obtain the expansion (2. 4) .

#1002 -5-




3. The monospline of least L -norm. We have already used the fact

2
oo ’
k-1
(3. 1) S(z) = ) e, M_(zw7))
g J m
represents the most general element of Sm K Using (2.5) we find its
b4
Fcurier expansion to be
1 v kel -vj
S(2) =5~ Yb,b, oe-b, 2 ) o
v j=0
HHowever
k-1 —vj
! > -
\3 ) T"v = Z th)
j=0

in the finite Fourier series representation of an arbitrary periodic sequence

(nv) of period k . This establishes

Lemma 4. The most general element of Sm K is given by
- b

zV
v v-l v-mtl v

1
3.3 = — b ... b
(3. 3) S(z) m_Zb

where (nv) is_an arbitrary periodic sequence of numbers of period k .

It is now easy to determine the monospline

I WL
(3.4) K(z) = ol z S(z) , S(z2) ¢ gm,k
having least LZ—norm, or

2w

2 ..\3 . i6
(3.5) Ikl . = (-L f 'k(z)1 de)‘ = minimum |, (z=e")
2 2m 0

Indeed, by Lemma 4 we may write

LA m 1 v

K(z) = m! z 2ni ;bv v-m+l znn,
1 m__1 ¥ v
“\ml! Zﬂibm”'bl“m)z 2ni ‘-Jbv"'bv—manz
vim

and using Parseval's relation we obtain
-6~ #1002




2w n_ |2
1
=/ |2 2d9=,-ﬂ%-'z—hbm ..blnm|2+ n [b,---b
0 4™ y=m(k)
v#m
(3.6)
n .eob
e 20 I ‘I =1(k)| v-ms]
Observe that by (2.6)
,b e bv-m+l, for all integer 1

vEL(k)

It follows that in minimizing the right side of (3.6) we must have

(3.7) n,=0 1 £=0,1,...,mol,ml, ..., k-

Therefore the search reduces to the much narrower class of monosplines of the

form

i m_ 1 v ]
(3.8) Klz) =52  -52n ), b...b __ . 2" . }
vEm(k)

In fact, by Lemma 3, we see that (3.8) describes the most general mono-

spline K(z) satisfying the relation ;

(3.9 K(zw) = 0" K(2)

Setting

-m#l -1
\ = ﬁa-w Ji-o" ™ e |

we may write (3.8) as

o0
(3.10) K(z):-l—zm-x Z 1 ks+m
]

m! K (ks+1)(ks+2)...(ks+m) 2 ,

and (3.6) becomes

2
3.11 ! = 11-x A 2
( ) {m!) ("Kllz) -]+ Ind s§«0 (ks+1)2(ks+2)f-...(ks+m)z

and we are to determine the value of A that minimizes the right side.

#1002




!
!

inequalities [1-A] 2 [1-Re | , In] 2 |Rer] show that this value of A

must be real. Writing

2

(3.12) c= ) (m!)
2 2
s#0 (ks+1)“... (ks+m)

we see from the identity

2 2 1 .2 C
- - — —— —— 0
(1-N)" + ch” = (1+c)(h 1 + 1 s (c>0) ,

that the least value of the left-hand side is =c/(l+c) and that it is assumed
if A= AN = 1/(1+c) . By (3.12) we see that the right side of (3.11) is least

if A equals
-1
o (m1)°

o (kst1P (ks+2)2... (ks+m)?

(3.13) Ny =

The least value of the right side of (3.11) we now find to be equal c/(1+c) =
-1
(o mDA = 1=,

We have therefore established

Theorem 1. The unique monospline (3.4) of least Lz—norm is

(3.14) Kel2) = =5 2™ = 2,5 _(2)
where
(3.15) S (z) = io 1 Ksm
) m samo {ks+1){ks+2)... {(kstm) ?

while x* is given by (3.13). The value of the least Lz-norm is
Ikl = =L :

(3.16) K* Z= ml (1-)\*)

4. The best guadrature formula (1.9). We obtain the best quadrature

formula (1.9), by the definition of the term "best' introduced by A. Sard [ 2],

if we choose in (1.9) K(z) = K, (z), and there remains to determine the
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coefficients C, according t~ :1.10). However, we have already noticed

i

that K*(z) satisfies the relation (3. 9) which by differentiations yields

( )(Zm) VK*(z) and in particular

k™D (20 = ok (z)

By (1.10) we see that
(4.1) c, = Jc,
and it therefore suffices to determine the jump A0 = - CO of ‘((m-l)(z) at
z=1. 1Itis easily obtained as follows.
Differentiating the Fourier series (3.14) m~1 times we get
(4.2) kMg = 2 - D k_l_ k5t
s ks+l :
3

Its sum is, as we know, a step function with discontinuities at the To
determine its jump Ao at z =1, we consider the function ¢(8) of period
¢m such that

(4. 3) e(0) = 1(n-6) if O0<cOB<2m

Defining also ¢(0) = 0, we have the familiar expansion

(4. 4) 0(8) = }351““9 Ly ; 158 for all real o ,
s#0

from which we derive that

1 10 _ 1 1 k+l 10
gelke)e” = 37 ) ks 2 s (z=e")
s#0

Using (4.2) we find the expansion

(4. 5) Kim Diel®) 4 21%, —-¢(k9)eie = (I-A )z + N, ), Wi%—ﬂ
s#0 )

ks+l

which is sec¢n to converge absolutely and uniformly on U . We conclude that

#1002 -9~




the left side belongs to C(U) . The jump of the function ¢(6) being = w ,

at 6 =0, by (4.3), we conclude that the jump 2i k*k-lrr of the second

term of the left side of (4.5) cancels the jump Ao of the first term. Therefore

4.6 . §
(4. 6) Ao X A

E ]
Using the relations (4.1) we obtain

Theorem 2. Let 1 =m«<k . Among all quadrature formulae of the form

(1) and having the property (1. 1), the best is the quadrature formula
p kel

L

j=0

(4.7) [tzraz = x 2mik L Y S+ (0™ [R (2™ (2002
z U

where K*(z) is the monospline of Theorem 1, while the positive fraction )\*

is defined by (3.13) .

Theorem 2 does not state or imply that the familiar average {or Riemann
sum)

L kel
(4.8) A=2nikt Y S
0

is not as good an approximation of the integral as the modified approximation
A A appearing in (4.7) . However, Theorem 2 does state that A is the

best approximation in the following sense: For all functions f(z) such that

PAL
\
(4.9) {18z %a0 £ HE
0

where H is a fixed constant, we have the inequAality
] L
(4. 10) I{If(z)dz AAl=IH s =2

For any other inequality

k=1
| [ f(z)dz - ) ij(wj)| £J-H
U 0
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valid for the class (4.9), we must have J> Tu

5. The guadrature formula that is exact if fe Sm K We wish to

determine the quadrature formula

k=1

(5.1) [fz)dz = ) T (o)) +RE
U o '

such that

(5.2) Rf =0 if fe sm,k

One way to construct such a formula is as follows. We assume that the class

]

sm ” has the interpolatory property at the knots « . By [4, Theorem 1]
’

we must

(5. 3) exclude the case that k is even and m is odd.

We are then assured [4] of the existence of a fundamental furction
Lp(2) € Sm, x such that

k-1 i
(5. 4) f(z) = L fIL_(zo7) i fc8

0 m, k
Integrating both sides of this identity along U we see that (5.1) has the
property (5.2) if we set
(5. 5) C = fL (zu))dz
j m
U
Again we assume (5.3). A second way of constructing this quadrature

formula is as follows. Let So(t) be the unique spline function such that

the monospline

.l m
(5.6) Ko(z) =TT Z - So(z)
has the property
(5.7) Kolo!) =0 (J=0,...,%1)

#1002 -11-




The existence and unicity of So(z) follow from {4, Theorem1]. We shall

now establish several properties of Ko(z) which will show that this mono-
spline will produce the quadrature formula we are looking for.

I. The monospline (5.6) satisfies

(5.8) Ky (zw) = o %y (2)
Proof: Clearly
-m 1l m_ -m
w KO(Zw)— mi z w SO(Zm)
is a monospline satisfying the relations (5.7). The unicity of Ko(z) impli.-

the relation (5.8) .

1I. The guadrature formula

k-1 0.
(5.9) ft(z)dz = ), C ) + Rt
U 0
0 (m-1) ) I
where - Cj = the jump of K, (z) at z=w , is exactif fe8

Proof: By Lemma | we may write
E——— 3

mk ’

! mDia) 16 fec™w

U U

However, the last form

sRf= [ Ko(z)f(m)(z)dz = [ K (2)df

(m-1)

(5.10) +Rf = [ Kj(z)df (2)
U
is also applicable (see proof of Lemma 1) if we only assume f(m_z)(z) to
(m-1)

be absclutely continuous and f (z) of bounded variationon U . We

and, therefore, that

may therefore assume in (5.9), (5.10) that f(z) ¢ Sm K

?

gm-1)

z) 1is a step function. If we denote by &, its jumpat z = uj , then

i
(5.7) and (5.10) show that

J
$Ryf = ) Ky(w')6 =0

-12- #1002




111 cC,=C, (§J=0,..,k1)

Proof: Letting f(z) = Lm(Zw-j) in {5.9), then (5.5) shows that

0 _ - _
Cj = {ILm(Zw )dz = Cj

The explicit construction of the quadrature formula (5.9) now presents
no difficulties. We conclude from the relation (5.8) that So(z) in an

m-flower and Lemma 3 implies that Ko(z) may be written as

00

m ks+m

N o1 _ ‘_ 1 S
(5.11) ko(z) =51 2 )\oszw (ks+1)(ks+2). .. (ks+m) >

for an appropriate value of the constant )\0 . The defining properties (5.7),

in particular Ko( 1) =0 show that

o0 -1

_ m!
(5. 12) A s=§m (ks+1)(ks+2), .. (ks+m)

This requires that the sum of the series in (5.12) should not vanish. By

{4, Lemma 4] this series can vanishonly if m =k-1 and m is odd. But
this would imply that k is even and m is odd, a situation which can not occur
because of our assumption (5. 3) .

We summarize our results in

Theorem 3. If we exclude the case that
L

{(5.13) m=%k-1 and m is odd ,

then

k-1
(5.14) [ 2z =ngzmik” L) ¢ (0™ [k (26™ (200
U 0 U

is a quadrature formula that is exact if f(z)e¢ Sm K’ where Ko(z) and )\0
’

are described by (5.11) and (5.12) . If we replace (5.13) by the more stringent

assumption (5.3) then the quadrature formula (5.14) may also be obtained by

#1002 -13-
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integration from the spline interpolation formula (5. 4) .

The value C0 = 2wl Xolk used in writing the formula (5.14) follow

from (4.6) onreplacing A by )\0 .

6. The gglxnomial components of a certain sgline function. The spline

function
o0

(6.1) s (2)= ),

§=-00

1 zks+m
(ks+l)(ks+2)...{ks+m)

appears in the representation (3.14), (3.15) of K*(z) as well as in (5.1!)
whi ch describes Ko(z) . By Lemma 3 it may also be characterized as an
m-flower of degree m-1 . Here we propose to determine explicitly its in-
dividual polynomial components. Without loss of generality we may assume

that m = k-1 and determine the components of

Q0

_ 1 ks+k-1
(6.2) Sk—l(z) = Z (ks+1). . .(ks+k~1) ‘

-Q0

it being clear by differentiations tta:

(k-m-1)

(6. 3) s_(2) =8, |

(z) , {(1=msk-1)

The functionai equation

(6. 4) S, yze) = 8 (2)

shows that it suffices to determine the polynomial component in the arc (l,w) .

Setting
(6.5) ¢ = exp(ni/k)

we turn Sk-l(z) by w-l to obtain, since ‘uk = -1, the new spline function

(135t} Jstk-l
(ks+l). .. (ks+k-l)

having its knots in the new locations \Pu’ . Let

00
(6. 6) s(z) = $5(z¢) = 2,

-00
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k-2 k=3
+a $oee t
0 (k-2)] 1 (k (k-3)1 k-2

(6.7) Po(z) =a

be the component of s(z) in the arc (qf ,¥) . The Laurent series (6.6)
having real coefficients it is clear that P(z) = P(z) if 2z is on the arc
(tll-l, ¢) and therefore also for all z . This shows that Po(z) is a real

polynomial. Also s(z) satisfies the relation s(zw) =w'ls(z) whence

6. 8) s(2) = o s(zow )

If z is ir. the arc (Y, $w), then (6.8) and (6.7) show that the com-

ponent of s(z) on tkis arc is

k'Z z k"3 . k_l
+ta,w

YA 2 .- ¢
k=21 t® ka1 * k-2

(6.9) Pl(z) Ta,.w

At this point we use that s(2z)e C (U) and obtain at z = ¢ the k-2

eqguations

(V) (v)

(6.10) ($) =P, 7(§) (v=0,...,k-3)

Using (6.7) and (6.9) we obtain the system

v-1
(w 1) L + al(wz-])(ﬂi-_—l)-!- + e + av(wv+l-l) =0 (v=1,...,k=2)

Dividing by w +1--l and using the relations

a

a0 WP 1 4%y 1 sin{ra/k)

B Bal T Bl B (B-a)! sin(rB/k)

we obtain the system

0=, o 5inln/k) + a; sin(zn/k)

11«
0 = 2y sinlr/k) + T 2= o, sin(2n/K) + a, sin(3n/k)
' 1
0= "o2)] @ sin(m/k) + W sln(zu/k) P ak_zsln((k-l)n/k)
#1002 15-




which in terms of the new unknowns

6.11) B, =a,sin BT (v 20, k-2)

becomes

(=]
1]

1
1r Pot By

(=]
|

1
=21 PotIr B AR,

1 1 1
=21 Pot a1 Bt T P T Bat By,
This being the system giving the coefficients of the rower series reciprocal

to ex = Exv/v! we obtain a solution pv = (-l)v/v! and by (6.11)
v . vl

(6.12) av=(—l)/(v; Sin(T_') , (v=0,...,k=-2)

From (6.6) and (6.7) we therefore obtain the identity

) s k-2
(-1) kstk-1 _ 'S v(k-z) k-v-2 /. (vil)m
613 2 (ks+0). .. (ks+k-1) © véo‘ YUl sin™=y

-0

valid in the arc (\p-l, y) , while c is a constant yet to be determined.

To obtain ¢ we set 2z =1 to obtain

© s k-2 _
(.19 ) (ks+1)(.-.l.)(ks+k-u = °'§ "”V(k"z)/““k{cm
-0

However, the left side Is easily evaluated directly from the partial fraction

decomposition

! _ 1 L (k2) kL
(6.15) (ks+l). .. (kstk-1) ~ (k-2)T {(ksH) ( RATTAAA ks+k°l}

From the classical expansion 2 (-l)s/(s+x) = n/sinmx we obtain

(=1° _ __ =
ks+v+l K sin (V:l!ﬂ
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If we multiply (6.15) by (-l)s and sum over all s we have

k-2
i’ L‘l)sr - L Z (_uv(k-Z)%m (vtl)m
(ks+l). .. (ks+k-1) ~ (k-2)1k o v k

- 00

Comparing with (6.14) we find that

LS

® (k-2)1k

(6.16) c

Using the relation (6. 3) we can also determine tae polynomial com-

ponent of (6.1) within the arc (l,w) . Indeed

-m _ (-1)° ks+m
voos () = 2;1 ®sil) .. (Rs¥m) 2

and differentiating (6.13) k-m-l1 times we obtain that

m-1 7
-m 3 L _nv({m-1}_m-v-l vil)m
©171) WS (24 = pe vgo( n*("; )z sin (41T

if z is confined to the arc (4:'1, $) .
As an example let us determine K*(z) using the formulae (3.14),
(3.15) for k=5 and m=2 . The rapidly convergent series {3.13) shows

that X =.969690 , and (6.17) furnishes the expression

-2 2 ™ 4 1
¢ K (zg) = 32" -\ z -
* * 5sin(m/5) Zcos%

in the arc (4;_1, ¢) . Graphing the image of the arc (4;-1,41) by the quadratic

polynomial on the right side and turning it by tpz = (or +72°) we obtain

the image of the arc (l,w) by w = K*(z) . The functional equation
K = 2K (:

allows to complete the image of the entire circle U which is shown in Fig. 1.

The five corners of the curve are the images of the wj , Fig. 1 showing in
parentheses the corresponding w’ . Moreover
#1002 -17-




Ik())] = 14063 , |K(wo')] = .10409

A general discussion and determination of the monosplines K(z) of

least L, - norm would be of interest.

(w)

(w)

(1)

Fig. 1
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